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Abstract

Stars are one of the most fundamental astronomical objects to study. In par-
ticular, studying star formation yields insights into other astrophysical phenom-
ena, such as how planetary systems develop and how the properties of galaxies
change over time. However, star formation is complex. Simple models often fail
to capture important details that a�ect measurable quantities such as the star’s
�nal mass.

One important phenomenon is the two jets of gas that are emitted in the polar
directions of an accreting protostar. These jets, called protostellar out�ows, carry
mass away from the protostar and a�ect the kinematics of the surrounding gas.
Furthermore, numerical simulations reveal that these out�ows are typically not
continuous streams, but rather discrete, fast-moving packets of gas. We would
like to quantitatively understand how these bullets impact protostellar evolution.

In this work, I explain a novel algorithm I developed to detect and track bul-
lets from star formation simulations. The presented approach solves a previously
unaddressed problem in computer vision: unsupervised tracking of multiple �uid
structures. Using the presented approach allows us to extract useful protostellar
physics from numerical simulations.
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Introduction

Many types of stars exist in the universe. Some are similar to our sun, many are
more diminutive yet longer-lived, and few are massive powerhouse stars. These
stellar properties directly correlate with important astrophysical phenomena,
such as strong interstellar winds, astrochemistry, and the prevalence of planetary
systems. Therefore, we would like to understand the mechanisms that control
these stellar properties.

Unsurprisingly, most of these stellar properties are determined at the outset
during the star formation process1. For example, a star’s mass depends on how
much available gas gravitationally collapses into a protostar. Or, the formation
of planets depends on the presence of dust grains in the surrounding gas. This
is why we’re interested in understanding the mechanisms of star formation.

Roughly, the star formation process (Figure 1) proceeds as follows. Scattered
throughout galaxies are giant clouds of cold gas called molecular clouds. They
consist mainly of molecular hydrogen gas, some helium, and trace amounts of
heavier elements. These molecular clouds are not perfectly uniform, and some-
times a region of relatively higher density exerts enough self-gravity to collapse
inwards. As this collapse continues, the gas heats up, and eventually the central
region becomes a dense protostar. The protostar continues to accrete gas until
there is none left to accrete.

Figure 1: Dense regions of gas within a molecular cloud collapse under their own gravity and
begin to form protostars. Each protostar accretes gas from its surroundings via an equatorial disk
and may also eject gas via polar out�ows.
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A very simple model of star formation is the Jeans criterion for gravita-
tional collapse. In this model, we only consider the gravitational instability of
an isothermal, isotropic, homogeneous cloud of gas. Under these assumptions,
one can derive the mass of the protostar1:

MJeans ∝ ρ

(
kT

Gmρ

)3/2

(1)

where T is the gas temperature, ρ is the gas density, m is the average particle
mass, k is Boltzmann’s constant, and G is the gravitational constant.

In reality, these assumptions are too strong. Real interstellar gas clouds are
subject to highly nonlinear phenomena such as turbulence and magnetic �elds2,3.
Unfortunately, these nonlinearities immediately thwart analytical approaches, so
we often rely on computational simulations to make headway.

Both numerical simulations and observations reveal much richer behavior
than is suggested by the simple model discussed above. For example, real pro-
tostars accrete gas in an equatorial disk, and turbulent vortices can a�ect the
kinematics of the infalling gas. One of the most prominent di�erences is the
presence of polar out�ows: jets of gas that are ejected at high speeds in the polar
directions from the accreting region. Although out�ows are frequently observed
in both real data and simulations, simplistic models cannot explain them3.

Furthermore, observations and numerical simulations reveal that these out-
�ows are typically not continuous streams, but rather discrete, fast-moving pack-
ets of gas we call bullets4–6. These discrete bullets are caused by variable accretion
rates; furthermore, they carry momentum and energy away from the protostar,
so they signi�cantly a�ect the kinematics of star formation7. This feedback phe-
nomenon is not well understood; the goal of this work is to make progress on
this front.

We would like to automatically detect and track the properties of protostellar
bullets as a function of time. Unfortunately, unsupervised multi-object tracking
remains a challenge in computer vision8,9. Existing tracking algorithms are re-
viewed in Background. However, our problem is further complicated by the
bullets’ ability to morph and coalesce over time (since they are �uid structures
rather than solid bodies). Nonetheless, I applied principles from statistical in-
ference and machine learning to develop an algorithm capable of distinguishing
and tracking structure within a video of �uid matter. I explain this algorithm in
detail in Approach. I report the algorithm’s performance on test data in Tests.
Finally, I use the algorithm to compute physical quantities of interest and analyze
the time evolution of out�ow bullets in Results.
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Background

Magnetohydrodynamic Simulations

The timescale of star formation is long compared to human timescales. Obser-
vations indicate that molecular clouds have a lifespan on the order of 107 years1.
This gives an estimate for the length of the star formation process. Since we are
interested in dynamic quantities, i.e. the movement of bullets within the polar
out�ow, it’s generically not possible to use real observational data to perform
this analysis.

Thankfully, powerful computational tools exist to address this problem. In-
stead of observing a real protostellar system, we may instead simulate the system
using magnetohydrodynamic (MHD) codes. MHD is e�ective because it can ac-
count for magnetic �elds and turbulence, both of which make the problem of
star formation analytically intractable. Using simulation, we can analyze the
long-term astrophysics of relatively slow-evolving systems.

In this work, I analyze the protostellar simulations produced by O�ner and
Chaban4. These simulate a single dense core surrounded by a warm, turbulent
medium embedded in an initially uniform magnetic �eld. The simulation en-
compasses a cube of side length 0.26 pc for a duration of about 5× 105 yr. The
simulation code also explicitly tags the high-velocity out�ow gas as tracer gas,
which allows us to distinguish the out�ow from the environmental gas.

The MHD simulation produces 3D maps of gas density, which can be pro-
jected along the line of sight to produce 2D “column density” images (Figure 2).
I preprocess the simulation outputs by producing logarithmically-scaled column
density maps of only the tracer gas. Since the environmental gas serves as a sort
of noise, focusing on the tracer greatly simpli�es the problem.

Machine Learning in Astronomy

Rapid strides in computer science in the past decade have allowed machine learn-
ing (ML) techniques to become accessible to all scientists. Supervised ML tech-
niques (such as neural networks and deep learning) have been especially success-
ful in learning patterns from data. However, supervised ML approaches typically
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Figure 2: Column density of tracer gas at di�erent times in protostellar evolution. The tracer
gas consists of the out�ow and any environmental gas which is carried away (entrained) by the
out�ow. Bullets (dense packets of out�ow gas) are clearly visible. Insets: the corresponding
column density of all gas (including the tracer).

require large, labelled data sets. In contrast, unsupervised learning aims to ex-
tract patterns from unlabelled data. In this sense, unsupervised learning is more
�exible. However, this also means that unsupervised learning is dependent on
heuristics or prior assumptions on the data.

Astronomy has greatly bene�tted from these advances since observational
astronomy is data-rich and supervised machine learning algorithms are very ef-
fective in extracting features from rich data sets10,11. However, since running
MHD codes is computationally expensive even on supercomputing clusters, we
don’t have the quantity of data required for supervised learning. Furthermore,
labelling the data for a �uid tracking problem introduces the possibility of hu-
man bias, since there are no concrete boundaries between di�erent regions of
gas. For these reasons, we worked to develop an unsupervised algorithm capa-
ble of detecting and tracking �uid structures in videos of protostellar out�ows.
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Maximum Likelihood Estimation

In machine learning, the dominant paradigm for solving an optimization prob-
lem is to frame it as an objective function: a real-valued function over the high-
dimensional parameter space whose extremum represents the optimal solution12.
The objective function depends on both the model parameters and the available
data, but this dependence may be highly nonlinear. As a result, it’s typically not
possible to analytically solve for the optimal parameters. In addition, because
there may be very many parameters, it’s usually impractical to perform any sort
of brute search (this is the well-known curse of dimensionality)13. Because of
these two setbacks, we usually rely on optimization algorithms such as gradient
descent and its variants12.

One way construct a plausible objective function is to use a statistical tech-
nique called maximum likelihood estimation (MLE). In the MLE framework, we
try to �nd the probabilistic model that is most likely to reproduce the data we
see14. To do this, we formulate the probability of our model reproducing the
observed data conditioned on the model parameters:

Pr
(
D|~θ

)
=

N∏
i=0

Pr
(
Di|~θ

)
(2)

where D is the observed data and ~θ is the parameter vector. Notice that we’ve
assumed that the data can be partitioned into N statistically independent parts,
which allows us to express the conditional probability as a product over the par-
tition.

It is sometimes di�cult to optimize this product. Instead, we’ll take the log-
arithm of this function, resulting in a new function which is monotonic with
the original. So, minimum of the negative log-likelihood coincides with the
maximum of the likelihood function. But the log-likelihood may be easier to
optimize numerically, since the factors in the product turn into a sum of inde-
pendent terms. We’re interested in �nding the ~θ which minimizes the negative
log-likelihood.

Optimization techniques

Given an objective function, how can we �nd an optimal solution (i.e. a global
minimum)? If the objective function is convex, it su�ces to initialize the param-
eters at any point and perform gradient descent (i.e. following the gradient of the
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objective function down to its minimum). However, gradient descent relies on
two fundamental assumptions: that the objective function is easily di�erentiable,
and that the objective function is convex12,15.

The former assumption is not di�cult to address in practice. Software pack-
ages exist to automatically di�erentiate arbitrary objective functions. However,
objective functions corresponding to interesting problems are rarely convex. In
other words, these high-dimensional manifolds often contain many local minima15.
In these cases, the result of gradient descent depends strongly on initialization.
Speci�cally, gradient descent will only �nd a viable solution if the state is initial-
ized within the corresponding “basin.”

One technique to address this concern is a physics-inspired Monte Carlo
method known as simulated annealing16. This method allows the parameter esti-
mate to make discrete jumps in state space. The jump is accepted with prob-
ability 1 if the resulting cost is lower than the cost of the previous state. If
the resulting cost is higher, the jump might still be accepted with probability
P = exp(−∆E/T ) where ∆E is the change in cost and T is the current "tem-
perature" of the algorithm. Clearly, at high temperature, nearly all jumps are
accepted, even for large cost increases. As T → 0, large cost increases become
less and less acceptable. In the annealing algorithm, we repeatedly allow the so-
lution to jump while gradually lowering the temperature to zero. Because the
solution may explore many di�erent basins early in the annealing process, this
algorithm typically succeeds at approximating a global minimum12,16.

Detection and Tracking

Multiple object tracking (MOT) is a challenging problem in machine vision which
has been addressed using a variety of techniques in recent years8. In this section,
I will review some of the popular approaches.

In the machine learning literature, the tracking problem is usually divided
into two sub-problems: detection and association8. Detection refers to the prob-
lem of identifying the relevant objects in each frame of the video. For example, if
we are interested in tracking cars in a dashcam video, the detection stage would
consist of �rst identifying all the cars in each frame of the video. In machine
vision, the task of localizing objects in an image is called segmentation. In prac-
tice, segmentation is typically done by using a neural network which has been
trained to look for the object in question. Note that to use a neural network for
segmentation, one must have su�cient labelled data to train the network to �nd
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the objects in question9,17.
Association is then the problem of constructing trajectories by connecting

the detected objects across frames. The main challenge is that di�erent objects
may have di�erent speeds and directions. In special cases, optical �ow methods
may ameliorate this problem, but these methods typically require high frame
rates18. If the frame rate is low compared to the average object velocity, it may
be di�cult to infer the correct trajectories. Another issue is occlusion: if an object
passes behind another object, it will not be detected for some time, potentially
confusing the tracking algorithm19.

The dominant paradigm, tracking-by-detection, treats the two steps as sep-
arate and sequential. First the objects are detected, and then trajectories are
constructed. This approach is convenient because one can use existing detec-
tors and then perform tracking in the low-dimensional feature space. However,
this approach su�ers from one main drawback: since association is dependent on
detection, errors in detection can cause the association to fail catastrophically8,19.

Recent works have attempted to address the issue of dependence on detec-
tion by performing learning association jointly with detection20. In other words,
the detection and trajectory construction are codependent and thus put on equal
footing. However, it is still unclear how to extend these techniques to the unsu-
pervised setting, where deep neural networks cannot serve as object detectors.

Furthermore, in the case of protostellar out�ows, additional problems arise:
the �uid structures may merge, bifurcate, and dramatically change morphology
over the course of their trajectory. This introduces additional challenges to the
association problem. Furthermore, since the 3D simulation data is very large (on
the order of 1 gigabyte per frame), we cannot a�ord to save frames at a high
frame rate. Therefore, optical �ow methods are not feasible.

For these reasons, I decided to use the tracking-by-detection approach. I use
a classical machine vision algorithm to detect structures in the out�ows. Using
this reduced-dimension data structure, I perform association using a continu-
ous optimization scheme. The association algorithm only considers temporally
local correlations; in other words, trajectories are constructed only looking at
the previous frame. However, tracking is not real-time, which means that the
trajectories at each frame can be optimized simultaneously. Both stages of the
algorithm is described in detail in the next section.
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Approach

Segmentation via Dendrograms

To capture the spatial structure of the out�ows in each frame, I use an enhanced
version of a data structure known as a dendrogram. Dendrograms are tree-like
structures which are commonly used in the star formation literature to represent
the structural relationships between dense regions of gas11. Because they are
fundamentally trees, dendrograms are ideal for representing hierarchical, nested
clumps of gas. I construct a dendrogram for each frame in the simulation and
then perform tracking directly on the time series of dendrograms. Because of
this, I use the term “frame” to refer to the corresponding dendrogram.

To understand how dendrograms are constructed, consider a 2D one-channel
image representing the projected gas density of a protostellar region. Since this
is a one-channel image, we can visualize the intensity as a topographic map,
as shown in Figure 3. Then, by starting at each basin and working upwards,
connecting branches at the basin boundaries, we can construct the equivalent
dendrogram. The leaves of the dendrogram represent dense cores of gas, while
internal branches represent the enveloping structures that connect the afore-
mentioned cores. I’ll use the term branch to collectively refer to both leaves and
internal branches.

The dendrogram is more than just a tree: it also contains information about

Figure 3: A 2D one-channel image, its topographic representation, and resulting dendrogram.
The dendrogram has 9 branches, of which 5 are leaves (labelled for clarity).
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the elevations at which basins meet, which captures more information about the
spatial structure of the gas. But not all the spatial information is captured; we lose
information about how the mass is distributed within each branch. In addition,
the dendrogram only roughly captures the relative spatial organization of dense
cores in the gas; the exact positions are lost. This more detailed information may
be useful during the tracking stage of the algorithm, so in the segmentation stage
I use, I also compute the following properties for each branch:

• Mass (m). The depth of the branch is insu�cient and physically irrelevant.
A better quantity to consider is the mass of the gas within the branch.

m =
∑
r,c

mrc (3)

where mrc is the mass of the gas at pixel (r, c) belonging to the branch.

• Center of mass (~µ). We want to know where in space this branch is located,
not just its relative location to other branches.

~µ = 1
m

∑
r,c

mrc~xrc (4)

where ~xrc is the spatial coordinate of pixel (r, c).

• Covariance matrix (S). If we approximate the gas in the branch as being
spatially distributed as a 2D Gaussian, then the corresponding covariance
matrix expresses the size and shape of the gas structure. In this view, ~µ
corresponds to the mean of the Gaussian approximation.

S = 1
m

∑
r,c

mrc(~xrc − ~µ)(~xrc − ~µ)T (5)

To construct the dendrogram, I implemented a recursive variant of Meyer’s
watershed algorithm21. This 1993 algorithm was proposed to perform “mor-
phological image segmentation,” which refers to image segmentation of a topo-
graphic map. Conceptually, this algorithm involves �nding a local minimum of
the topographic map (i.e. a dense core of gas) and then “�ooding” the basin until
it over�ows into a neighboring basin. Once another basin has been identi�ed,
we can repeat the �ooding procedure and join the two branches. By performing
this recursively, we construct a dendrogram bottom-up, starting from the leaves
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and ending at the root. Conveniently, during the algorithmic �ooding procedure,
we can compute the quantities of interest mentioned above.

Viewing dendrograms in the lens of the out�ow problem, it’s tempting to
claim that dendrogram leaves correspond to the bullets we’re interested in. How-
ever, this is not strictly true. When two bullets are physically nearby in space, the
two leaves may in fact contain little mass; instead, the branch that joins the two
leaves contains much of the mass. This e�ect is important when bullets merge or
there is occlusion. For this reason, it’s not su�cient to perform tracking on the
leaves alone. The tracking algorithm must account for the entire dendrogram.

The dendrogram provides a view into how mass is spatially organized in the
out�ow. The input images are high-dimensional (d ≈ 104), since each pixel
corresponds to a dimension in the vector space of possible images. In contrast,
dendrograms have signi�cantly lower dimension: each dendrogram has on the
order of 101 branches, each with a handful of features we have computed. In
this view, dendrogram construction is a form a feature extraction. However, we
have paid a small price: the data is slightly less structured than before. Whereas
each image is always a square grid of pixel values, dendrograms can take any
shape. The trees need not even be binary. This introduces challenges in running
e�cient optimization algorithms for the tracking stage.

Tracking via Linking Matrices

Broadly speaking, we are interested in tracking how protostellar out�ow mass
moves over time. After segmentation, the mass is organized in a dendrogram, so
the tracking stage must associate branches from time twith the branches at time
t+ 1.

Previous work has shown that it is possible to construct a cost function whose
minimum corresponds to the true associations of the object detections between
frames8. However, there are two fundamental issues with this approach. One is
that object association is a combinatorial problem. Although combinatorial op-
timization techniques exist, they are typically not as robust as continuous tech-
niques such as gradient descent22. Secondly, the �uid structures are not self-
contained. Mass can �ow from one to multiple branches, so object association
may not capture the underlying dynamics of the �uid structures over time.

To address both problems simultaneously, I relax the assumption that all �uid
in a branch in frame twill �ow into a single branch in frame t+1. Instead, I use a
framework in which mass can �ow from one branch into multiple branches (and
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Figure 4: Linking matrices (right) describe how mass �ows between branches in consecutive
frames (left). The matrix elements Lij specify the proportion of mass from branch i (at time t)
that �ows into branch j (at time t + 1). Three such elements are explicitly labelled here.

conversely, a branch can “accept” mass from multiple branches in the previous
frame). In graph theoretic terms, I arrange the branches in frames t and t+1 into
a complete bipartite graph, where the edge weights describe mass �ow from the
branches of dendrogram t into the branches of dendrogram t + 1. The nonzero
quadrant of the adjacency matrix then fully encapsulates how the mass �ows; I
call this data structure the linking matrix since it describes how dendrogram t is
linked to dendrogram t+ 1.

More concretely, at time t, the linking matrix L(ij) is an n×m matrix, where
n is the number of branches in dendrogram t andm is the number of branches at
t+1. The matrix elements Lij specify the fraction of mass from branch i (at time
t) that �ows into branch j (at time t + 1). So, the Lij must satisfy 0 ≤ Lij ≤ 1
and ∑j Lij = 1 for all i. In other words, each row speci�es a probability mass
function. In practice, these constraints can be enforced by reparametrizing using
the softmax function. The linking matrix is schematically explained in Figure 4.

It’s useful here to de�ne some notational conventions I’ll use hereforth. I’ll
use the indices i and j to refer to branches from frame t and t + 1 respectively,
in the context of a linking matrix L(t). I’ll usually drop the (t) superscript, since
the method is symmetric with respect to time translation (i.e. no part depends
explicitly on t). I’ll also de�ne

mij = miLij (6)

to be the amount of mass from branch i that �ows into branch j. This shorthand
will be used extensively in the next section.

To summarize, the set of linking matrices {L(t)} fully speci�es how mass
from each dendrogram is distributed to the branches of the next dendrogram.
Each row of a linking matrix describes how the mass in a given dendrogram
branch is distributed among the branches in the next frame. Conversely, each
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column of a linking matrix indirectly describes how the mass in a given branch
of the next frame receives contributions from branches in the current frame.

In this scheme, the matrix elements of the linking matrices are the optimiza-
tion parameters, and since they are real-valued parameters, we can construct
a cost function and perform gradient descent. This way, we sidestep the chal-
lenges posed by combinatorial optimization while simultaneously allowing the
�exibility required for tracking �uid structures.

Deriving the Objective Function

In many standard machine learning problems, there are best practices for choos-
ing objective functions. For example, regression problems typically utilize mean-
squared-error as an objective function, whereas classi�ers usually use cross-
entropy loss. However, for unsupervised problems such as the present tracking
problem, there is far more �exibility in choosing an objective function. This is
both a strength and a weakness: the �exibility allows us to incorporate heuris-
tics, but it may be di�cult to de�ne an objective function which allows for fast
convergence.

Because of this, it’s important to take a principled approach in constructing
the objective function. I used maximum likelihood estimation (MLE) to derive the
objective function. In this section, I’ll use physics to motivate di�erent factors in
the likelihood function. Each factor contributes a term in the objective function
(which is the negative log likelihood).

Conservation of mass. The total mass from frame t �owing into each
branch in frame t + 1 should match the branch’s true mass. Let’s de�ne the
fractional mass increase of branch j as

m̃j = mj∑
imij

(7)

where the numerator is the true mass of branch j and the denominator is the total
mass contribution from branches in the previous frame. We de�ne the relative
error as

χj = (m̃j − 1)2

m̃j

. (8)

This functional form has the following nice properties: a) χj ≥ 0 with equality
only when m̃j = 1 (i.e. the linking matrix exactly conserves mass), and b) it is
symmetric with respect to the reciprocal of the argument (m̃j ← 1/m̃j). This
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reciprocal symmetry re�ects time-reversal symmetry, since m̃j represents the
fractional increase in mass over time.

With these de�nitions, we can assign a Gaussian distribution to the proba-
bility of seeing the data D (i.e. the dendrograms at t and t + 1) given a linking
matrix L(ij):

Pr
(
D|L(ij)

)
∝
∏
j

exp
(
−
χ2
j

2σ2
m

)
(9)

where σm is a hyperparameter which describes the sensitivity to large deviations
from mass conservation. I found that σm = .01 works well.

Locality and Morphology. The spatial distribution of gas in any branch
in frame t + 1 (i.e. its location and shape) should roughly match those of the
branches that contribute to it from frame t. First, I’ll de�ne the contribution
factor cij = mij/

∑
imij which is the fraction of total mass �owing into branch

j that comes from branch i.
Then, we de�ne the in�ow center-of-mass as

~µin,j =
∑
i

cij~µi (10)

and the in�ow covariance matrix as

Sin,j =
∑
i

cij
(
Si + (~µi − ~µin,j)(~µi − ~µin,j)T

)
. (11)

These formulae follow from the mean and covariance matrix of a Gaussian mix-
ture. Recall that the covariance matrix here describes the spatial distribution of
gas in a branch by approximating the gas as being normally distributed in space.
In other words, we’re modelling the in�ow gas as a mixture of Gaussian branches
(weighted by cij) and computing the overall mean and covariance matrix of the
mixture. Then, we’ll compare this with the mean and covariance matrix of the
�nal branch j:

Pr
(
D|L(ij)

)
∝
∏
j

exp
(
−
‖~µj − ~µin,j‖2

2σ2
µ

)
(12)

and
Pr
(
D|L(ij)

)
∝
∏
j

exp
(
−‖Sj − Sin,j‖2

2σ2
S

)
(13)

so that large mismatches in location and morphology are exponentially unlikely.
I use the hyperparameters σµ = 10 and σS = 1.
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Structure. The linking matrix should preserve the hierarchical structure be-
tween dendrograms t and t + 1. Speci�cally, if two branches i1 and i2 have
a parent-child relation (the closest relation in dendrogram space), their mass
should �ow into branches {jn} that are also nearby in dendrogram space.

Here, I use the term dendrogram space to refer to the metric space that can
be constructed on any tree: the metric g(i1, i2) is the length of the shortest path
between vertex i1 and i2. This metric space describes whether two branches are
“hierarchically closeby.” I claim that linking matrices that don’t preserve this
structure are physically unlikely.

We’ll consider two branches i1 and i2 which have a parent-child relation in
dendrogram t. The linking matrix de�nes how the mass from i1 and i2 is dis-
tributed over the branches {jn} in dendrogram t+1. Let’s de�ne this distribution
as

Pi1,i2(j) = mi1j +mi2j

mi1 +mi2

(14)

or in other words, the fraction of mass from branches i1 and i2 that �ow into
branch j. This is a probability distribution over the branches of dendrogram
t+ 1.

Although this distribution isn’t a distribution in a Euclidean space, it’s a dis-
tribution on a metric space, so we can still de�ne the variance of the distribution
using the Frechet variance23:

VF ≡
1
2E

[
g(X1, X2)2

]
(15)

which in this case is

VF (i1, i2) = 1
2
∑
j1,j2

g(j1, j2)2Pi1,i2(j1)Pi1,i2(j2). (16)

Note that the initial variance of the two branches i1 and i2 in dendrogram t is

VF,in(i1, i2) = mi1mi2

(mi1 +mi2)2 . (17)

Physically realistic linking matrices preserve dendrogram structure, so for
any dendrogram-local pairs of branches from frame t, their mass distribution
over branches in frame t+1 should match their initial variance. If the distribution
instead has a high variance, then that means that the mass from branches i1
and i2 di�uses throughout dendrogram t + 1. This violates locality and implies
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that hierarchical structure isn’t preserved by the linking matrix. I model this
constraint with

Pr
(
D|L(ij)

)
∝
∏
i1,i2

exp

−
(
VF (i1, i2)− VF,in(i1, i2)

)2

2σ2
V

 (18)

where the product is only over pairs of branches i1 and i2 that have a parent-
child relationship. This selects only the branch pairs that are dendrogram-local.
I set the hyperparameter σV = 0.3.

These considerations (mass conservation, locality, morphology, and hierar-
chical structure) each contribute the total conditional probability Pr

(
D|L(ij)

)
,

which is proportional to the product of equations 9, 12, 13, and 18. By Bayes’
theorem,

Pr
(
L(ij)|D

)
∝ Pr

(
D|L(ij)

)
Pr
(
L(ij)

)
. (19)

Since I assert no prior about the likelihood of linking matrices, Pr
(
L(ij)

)
assumes

the maximum-entropy distribution, which is the uniform distribution. Therefore,
we can directly take the negative log-likelihood of Pr

(
D|L(ij)

)
, obtaining a sum

of terms which we can attempt to optimize using gradient descent. This will give
us a maximum likelihood estimation for the model parameters L(ij).

Initialization using Simulated Annealing

The objective function detailed above is not convex. As a result, naive initializa-
tion schemes often yielded poor results after gradient descent, since local opti-
mization cannot guarantee global convergence without good initial parameters.
Following the strategy utilized by other tracking algorithms8,22, I use an existing
optimization algorithm to initialize the parameters.

Speci�cally, I used simulated annealing on a simpler problem with fewer de-
grees of freedom, then used the result of the annealing procedure to initialize the
parameters of the linking matrices. I considered the problem where each den-
drogram branch at time t is associated with a single dendrogram branch at time
t + 1. In terms of the linking matrix, this means that each row is an indicator
function. This is clearly a special case of the generic linking problem described
above, where each row of a linking matrix speci�es an arbitrary probability mass
function. Since the restricted problem has a smaller state space than the general
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problem, it’s feasible to try a global optimization method (i.e. simulated anneal-
ing). In addition, annealing conveniently handles the discreteness of the smaller
state space.

The annealer optimizes the function

C(s) =
tmax∑
t=1

∑
j∈dt

∥∥∥~µin,j − ~µj
∥∥∥2

+ βχj (20)

where ~µin,j is the in�ow center-of-mass de�ned in equation 10, ~µj is the center-
of-mass of branch j, and χj is the relative mass error de�ned in equation 8. I set
the hyperparameter β = 100.

Hyperparameter selection

The hyperparameters that describe the relative importance of terms in the like-
lihood function were determined manually by examining the units and scale of
the quantities being measured in each likelihood factor. The hyperparameters
are summarized in the table below.

Hyperparameter Justi�cation

σm = .01 We would like to strongly penalize deviations from χj =
1. Therefore, our likelihood function should have a small
error interval (standard deviation) around the mean.

σµ = 10 Since the distances are measured in pixels, a location er-
ror of 10 pixels is a reasonable standard deviation.

σS = 1 The L2-distance between two 2× 2 covariance matrices
of the bullets we see is on the order of 10, so an error
interval of 1 is reasonable.

σV = 0.3 Because the dendrograms have depth on the order of 10,
the Frechet variance should be on the order of 1. So I
chose an error interval of comparable magnitude.

β = 100 Since we want to strongly penalize χj 6= 1, and the scale
of the location term is being measured in pixels, we boost
the mass term in the annealing function.
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Results and Future Work

The tracking algorithm is designed to work on 2D videos of protostellar evo-
lution. However, the simulation outputs are 3D, so I �rst compute the column
density along a line of sight to produce 2D projection images. This produces a
video containing the dynamics of all protostellar gas. I also produce a video that
only shows the tracer gas (recall that the tracer gas is the out�ow gas along with
any gas that is picked up by the out�ow).

Because the data is not labelled, there are no direct metrics for evaluating the
accuracy of the algorithm. However, we can examine the quality of the algorith-
mic tracking results by eye to understand its strengths and weaknesses. To do
this, we �rst identify the structures that we classify as bullets, and then use the
linking matrices to extract feasible trajectories for these bullets.

First, let’s de�ne the total mass mi,tot of a dendrogram branch to be the mass
enclosed by that branch and all its dendrogram descendants. Then I de�ne the
mass fraction of a bullet to be fi = mi/mi,tot (such that fi ∈ (0, 1]). Finally,
I de�ne a bullet as any branch with fi > 0.8. (This threshold was determined
by inspection, although the results are not sensitive to this choice.) If a bullet’s
dendrogram parent is also a bullet, then they are grouped as part of the same
bullet. This de�nition segments the dendrogram into bullets (which consist of
branches near the leaves) and inter-bullet out�ow gas (the upper branches in the
dendrogram).

In Figure 5, we see that bullets are identi�ed and tracked faithfully. Large bul-
lets are especially easy to identify and track. The tracking algorithm is able to
handle bullet merger events due to the robustness of the linking matrices. How-
ever, visually verifying the tracking accuracy can be sensitive to the way in which
we de�ne bullets and extract trajectories from the linking matrix. In the results
shown, we use a simple scheme where we de�ne bullets by a threshold (as de-
scribed above) and assign trajectories to bullets using a modi�ed stable-marriage
algorithm (where the linking matrix encodes the “preferences” of bullets to be as-
signed to the same trajectory). However, a more sophisticated scheme may be
able to better capture the time evolution of bullets.

Despite these promising results, the algorithm has weaknesses which can
cause tracking failure. For example, the algorithm sometimes struggles to track
nascent bullets that are close to the inner region (roughly within 1× 104 AU of
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Figure 5: Over 6 frames, bullets are faithfully tracked, as shown by their colors. Merging events
retain the color of the larger-mass bullet, which is seen in frames 2 and 6 (teal) and frame 4 (moss
green). Note: mergers increase the spatial extent of the bullet since the merged bullet includes
both original bullets and the branch that joined them. Insets: the original out�ows.

the protostar). This may be because the protostar is am out�ow mass source, so
mass conservation does not necessarily apply near the protostar. In addition, the
algorithm also does not account for boundary conditions, so it struggles to track
bullets that are leaving the frame.

Several possible improvements may address this issues. First, the likelihood
function includes no motion model. This is because motion is di�cult to model
when we are considering clusters of gas which may di�use and split between
frames. Simple motion models, such as linear velocity �elds8, need to be modi�ed
to account for the di�usion of �uid.

Secondly, it’s not clear how logarithmic mass a�ects the mass conservation
term. Recall that in the simulation output frames, the pixel intensity represents
column density on a logarithmic scale. This is to account for the large dynamic
range of out�ow structures; indeed, dendrograms constructed from linear-scale
images of column density fail to capture important features. However, we only
expect physical mass to be conserved, not logarithmic mass. Further investiga-
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Figure 6: Time evolution plots for a few select bullets. The colors correspond to the colors
shown in Figure 5. a) The cross-sectional area of bullets over time. Initially, bullets increase in
size; some bullets seem to decrease in size later, but this is simply an artifact of the merging
process (the dendrogram leaf is getting smaller since it’s starting to overlap with another leaf).
The teal curve shows that the size recovers after the merger is complete. b) The apparent velocity
of the bullets, determined by �nite di�erence between frames. The inconsistencies in velocity is
likely due to merger events.

tions are required to elucidate the role that logarithmic mass plays.
From the bullet trajectories, we can compute the time evolution of bullet

properties (Figure 6). These preliminary results indicate that bullets grow over
time, as expected. During some periods, the bullet size seems to decrease, but
this is an artifact of the merging process. This is because, as two bullets merge,
their dendrogram leaves become smaller and their parent branch grows larger.
We also see that the bullet velocities are on the order of 10 km s−1, but are distin-
guishably di�erent from bullet to bullet. However, the velocities are computed
via �nite di�erence between the bullets’ centers of mass; in the future, we intend
to use the momentum and energy (which are encoded in the simulation outputs)
to directly probe the kinematics of the bullets over time.

In the future, we would like to incorporate a motion model to improve ac-
curacy and robustness. We would also like to extend the algorithm to directly
operate on the 3D simulation outputs. We expect that dendrogram construction
will be computationally more expensive; however, this will allow us to avoid the
challenges associated with occlusion. In addition, by tracking on the simulation
outputs, we can directly extract the mass evolution and kinematics of the bul-
lets from the simulation data, rather than inferring them from projective images.
Finally, we hope to apply this algorithm to simulations of larger star-forming
regions to understand the kinematics of dense cores of gas in a stellar nursery.
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